Par allelization of the NIMROD Code

Authors. Alphabetical by Institution

A. Koniges, A. Tarditi, X. Xuegiao, Lawrence Livermore Nat. L ab,
D. Barnes, Los Alamos National L ab,

S. Plimpton, Sandia Albuquer que,

+ the NIMROD Team,
+1 Sl S-code Team, Sandia Livermore
+CRAY RESEARCH and Univ. Texas Collabor ations

38th Annual Meeting, APS-DPP, 11 - 15 Nov. 1996, Denver
Jointly supported by DOE-OFE and DOE-MICS

OUTLINE

Summary of Parallel Concepts and
Architectures

Highest Level Nimrod Parallelization
Solver Level Parallelization

First results

— CRAY Research T3E at U. Texas
— CRAY Research T3D at LLNL

Review: What 1s MPP?

£& &

? Interconnect ?

2-32+ processors today 128 - up today
Memory shared Memory physically distributed
High powered Processors (C90, SMP’s) High Powered Micros (e.g. Alpha)

MPP Today

RS6000 - IBM
Dec Alpha - Cray
Sparc - TMC, Meiko

Processor

16 MBytes - 256 MBytes
memory Memory Ram per processor

Switch / Network Network |[omega IBM SP2, Meiko
3D Torus Cray T3D,E

ddwyojui-1onpoid/o11gnd/woo’ Aela - mmm//:diy

lwiy'aslt AvVYD/

1AGN ¥9-9T
(sdo|dIN 0ST)
A3 298Q

109UU02J31U]
YI0MISN

salAdIN ¥9-9T | sa
(sdojdIN 0ST)
A3 998Q

A
‘ l\ l\ ‘ull

RIL_LIT P ‘-u - -l - —Il

‘\Hul‘iulmn i(| |\‘nl\ mu ‘ull _(,

O)y = =,

<\HII‘H.I‘H. H(\ I\‘“I\ ‘“I\ ‘ull —‘.

w-w -l\ w-|| -l —‘I

asl Aeip

Access tines

cache
O

\ ocal mem

non-1| ocal nmem
Proc 1 Proc 1 _ I

send A[25] receive A[25]

Each Processing Elenent (PE) owns part of the data.
QG her PE' s nust generate nessages to access nenory.

Steps in Parallel Code Devel opment

« Code design to avoid bottle necks

Block domain decomposition of 2D toroidal mesh
Blocks seam together

Blocks or Multiple blocks assigned to processors
FFT’ sin third dimension restricted to block

Communication between blocks via Message Passing Interface
(MPI)

Single Processor Optimization
Use optimized libraries for compute intensive pieces
Optimize use of cache

e Multiple Processor Optimization

overlap communication and computation

o |terative Solver Design Issues

NIMROD Coding Choices

Message-passing parallelism with F90/M P

F90 provides dynamic memory, rich data
structures

MPI provides portability to any machine with a
single-processor FO0 compiler

MPI allows irregular, asynchronous
communication

Same code will run on workstation, Cray C90, or
parallel platforms:
— Cray T3D/E

— IBM SP2
— Workstation Clusters

Grid Structure of NIMROD

 NIMROD gridisagenera collection of joined
sub-blocks mapped to the poloidal plane.

« Edge points of adjacent blocks join exactly.

Sub-blocking with associated seams

multi-block grid

Each edge point has
“Image” pointsin other
blocks/seams.

1-d seams—__

/

/!

™

n l|“
e seam pts m

= Image pts

N

|

—

|

0000 oo —°

FE integration stencil for block interior and
across block and/or processor boundaries

BV
| < |
| lﬁJH lllll --
/N i
N
| nterior _

Across boundaries
« |If 2 adjacent blocks are on different processors, a data exchangeis

needed to complete the integration.

Inherent parallelism in NIMROD

» Each processor owns 1 or more “blocks’
and their associated “seams’.

e Computations can be done on each block
Independently.

e Only connection/communication with other
processorsisvia“seams’

Parallel Tools are used to analyze performance

aljuaaddy 44

ﬁ

— i

Performance Analysis with Apprentice: Browse

] Hbrowse Application Call Tree

Application Call Tree

MIMREOD

— TIMERRA

— DUMP_HMOD, ROTUMP
— SPLIME_GREIT

— DEMOD, I _IMIT
—|EDGE_IMIT

— MARIAEBLE_ALLOC
—\MATEIX_IMIT

—— B_AMD_J_IMIT

—— MODULO

— (KDRAW_0OUT, DTAGHOSE
— DXMOD, DE0UT

— (KIRAW_0OUT HISTORY L3
—— MIM_STAT

— DUMP_HMOD, WRTILMP
— ADYANCE

SHIFT
MEWIMPDT
ADVA

H External Routine _H_ Intrinzic Boutine _H_ Search MNode

[N N

— BFROMA

— ESOLVE

— MATH_TRAN, TRAM_PCOY
— RELOCE, RELOCK_GET_RHS
— MATH_TRAN, TRAM_PCON
— EIGE.EDGE _METWORK
— SIZE

— EXTERMAL_EC

— RELOCK, RELOCK_GET_RHS
— RELOCK, RELOCK_MAKE_MATRTX
— EIGE,EDGE_METWORK
— SIZE

— EXTERMAL_EC

— EDGE.EDGE_DIY

—— DIRICHLET_OP_T

— IT_S0LY30

— ITER_DIAG, ITER_D_SOLYE
— NIM_STOP

_|amHz

Performance Analysis is Beginning with Apprentice

Compiling, loading and executing with new/old languages on MPP
architecturesis difficult

Apprenticeis being used to identify problem areas

Exclude option is used to isolate subroutines

Subroutines are sorted by seconds (Amdahl's Law)

GFlop rate can be computed only after flopsin libraries are defined

Single Processor Optimization IS in progress

Code Performance:
1 Total processors (PEs) alocated to this application

2.28 x 106 Floating point operations per second (for 1 PES)
2.83 x 10"6 Integer operations per second (for 1 PES)

2.28 x 10"6 Floating point operations per second per processor
2.83 x 10"6 Integer operations per second per processor

3.20 x 10”6 Private loads per second per processor

1.15 x 1076 Private stores per second per processor

0.00 x 106 Local shared loads per second per processor
0.00 x 106 Local shared stores per second per processor
0.00 x 106 Remote loads per second per processor

0.00 x 10"6 Remote stores per second per processor

3.03 x 106 Other instructions per second per processor
12.50 x 1076 Instructions per second per processor

0.71 Floating point operations per |oad
0.89 Integer operations per load

Time spent performing different task types:

56 sec (12.61%) executing "work" instructions

77 sec (17.31%) loading instruction and data caches

0 sec (0.00%) waiting on shared memory operations

0 sec (0.00%) waiting on PVM communication

0 sec (0.01%) executing "read" or other input operations
10 sec (2.35%) executing "write" or other output operations
301 sec (67.72%) executing uninstrumented functions

100.00% Total

Detailed Description of Single PE Performance on T3D

The combined losses due to single instruction issue, instruction cache and data
cache activity are estimated to be 77 sec, or 17.31% of the measured time for
this program.

The combined expenditure of time for output routines is measured to be 10 sec,
or 2.35% of the measured time for this program.

The combined expenditure of time for input routines is measured to be O sec, or
0.01% of the measured time for this program.

The sections of code, below the current selection, with the largest amount of
total time including subordinate code and called routines, are NIMROD, ADVANCE,
RBLOCK.

The sections of code, below the current selection, with the largest amount of
total time excluding subordinate code and including called routines, are
ADVANCE@128, RBLOCK, INTEGRANDS.

Parallel Additionsto Serial NIMROD

Assignment of blocks to processors (load-balancing)
Setup of data structures for parallel seaming.

Knit seams between blocks.

— used in explicit timestepper

— used in matrix-vector multiply of CG-solver

Dot-products for CG-solver
/O

Seria Seam Connection

1) Copy from block-edge grid points to seams

2) Loop over images of each seam point, sum
Image values to block-edge grid points

3) Apply external boundary conditions.

Parallel Seam Connection

1) Send my seam data to neighboring processors.

2) For seam points where | own both image pairs, sum image
values to my block-edge grid points.

3) Receive incoming image data from other processors sum it
to my block-edge grid points.

4) Apply external boundary conditions.

5) Copy from my block-edge grid points to my seams.

Attributes of Paralel Seam
Connection routine

Uses asynchronous communication in irregular pattern of
connectivity between processors.

Overlaps communication and computation (steps 2-4).

Pre-computes data structures to optimally pack/unpack
messages being exchanged with other processors.

Fast !

— Seam communication is only small fraction of block
computation time.

Results

o Parallel performance of seam-connection
kernel

o Parallel performance of explicit timestepper

o Parallel performance of CG solver using
diagonal pre-conditioning

[1ming Results for Parallel Seam
Connection on T3E

e 1.02 million grid cells, 174 blocks, 51200 seam
points, 3 values/grid-cdll

e CPU secondsfor 1 seam-operation:

Procs 1 2 5 10 20 30
ime 0.64 0.25 0.12 0.081 0.033 0.024

» Scales roughly linearly with size of grid and number
of processors

Timing Results for
Explicit Nimrod T3D Calculation

e CPU seconds for 100 timesteps on the T3D shows
excellent scalability as problem size increases.

Blocks/Cell |1 PE |2PEs (4 PEs |8 PEs |16 PEs |32 PEs

4/400 422 | 190 | 103
16/1600 145.3 38.5 11.0
64/6400 752 53.7 21.0
256/25,600 150.5 75.9

1024/102,400

Timing Results for
Explicit Nimrod T3E Calculation

* CPU seconds for 100 timesteps on the T3E shows
excellent scalability as problem size increases.

Blocks/Cell |1 PE |2PEs [4PEs |8 PEs |16 PEs |32 PEs |40 PEs
4/400 7.85 4.05 2.35
16/1600 31.7 7.95 2.35
64/6400 16.5 845 455 455
256/25,600 33.0 17.0 14.8
1024/102,400 715 62

Timing Results for
Implicit Nimrod T3E Calculation

CG solver with diagonal preconditioning
50 timesteps, roughly 40 CG iterations per step
Preconditioning methods for CG solver require

more study
Blocks/Cell |1 PE |2PEs [4PEs |8 PEs |16 PEs |32 PEs |40 PEs
4/400 235 124 6.9
16/1600 89.7 24.8 79
64/6400 43.3 21.7 12.1 12.6
256/25,600 88.3 444 40.0

First Performance Results Show
Nearly |deal Speed-up (even for fixed problem size)

400 cells
wm% mm_m T3E Explicit Solver
25,600 cells

102,400 cells
Ideal Speed-up

< o0l

Vv

0.01 | -

CPU Sec/Time Step
|

0.001 S A
1 10 100

Number of Processors

Scaled Speed-up Comparison of T3E/D

 T3Eisfactor of 4.5
faster
— 2X processor speed
— chaining
— cache effects
o Scalability isvirtually
linear for both .
machines | N

0.01 — —
10 100

=
o

e
L 4

/

:

o CPU secs/time step

Number of Processors

Conclusions

Blockwise-design of NIMROD enables rapid message-passing
parallelization.

Explicit and diagonal-preconditioned CG solver are running well in
parallel

T3E out-performs T3D, but both perform well

— (Cache, Processor speed)

F90: great language

— terrible compilers in generd

— Good on T3E, but libraries still missing

— Acceptable on T3D, but performance tools need improvement
— does it produce fast code ?? (open question)

Future Work

e Implement 2nd NIMROD CG solver
(block-invert preconditioner) in parallel

e Test convergence and performance of
solvers as afunction of number-of-blocks,
number-of-processors, physics being solved

* Try new iterative solvers
e Optimize code performance

Special Acknowledgements

 DOE MICS Office supported SNL work on
solvers and parallelization for the NIMROD
project

* The High Performance Computing Facility at UT

Austin provided computer time on their 40-
processor Cray T3E

e The Institutional Computing Facility at LLNL

provide computer time on their 256-processor
Cray T3D

